{
"metadata": {
"name": "",
"signature": "sha256:de5a0d0fb56318a7e68304f53cfaa50b538b4b2a84bf5d1917261dc6f9aba8e8"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Save the PDF Locally\n",
"[Japanese Qualifying](http://www.fia.com/sites/default/files/championship/event_report/documents/2014_15_JPN_F1_Q0_Timing_QualifyingSessionLapTimes_V01.pdf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Perform Imports and Add Our Development Directory to the Python Path"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import sys\n",
"import os\n",
"import seaborn as sns\n",
"%matplotlib inline\n",
"\n",
"# handle sphinx building docs from higher level directory\n",
"path = os.path.realpath(os.path.dirname('__file__'))\n",
"if 'notebooks' not in path:\n",
" rel_path = ''\n",
"else:\n",
" rel_path = '../../'\n",
"\n",
"# get access to formulapy module\n",
"sys.path.append(os.path.realpath(rel_path)) "
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import the FIA PDF Parser"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from formulapy.data.fia.parsers import parse_laptimes"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Call the Parser on our PDF File\n",
"This demonstrates the primary data format that this project uses, which is [Pandas Dataframe](http://pandas.pydata.org/). This is a tabular format that works much like a in memory database. This can be more intuitive, compared to nested structures that are often used with Matlab.\n",
"\n",
"This example looks complicated due to having to work with different paths when building the docs, but when using it locally, you would just perform:\n",
"\n",
"```parse_laptimes('\\full\\path\\to\\thepdf.pdf')```\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df = parse_laptimes(os.path.realpath(rel_path + 'data/fia_qualifying.pdf'))\n",
"df"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" driver_no | \n",
" name | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 846.000 | \n",
"
\n",
" \n",
" 1 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 94.784 | \n",
"
\n",
" \n",
" 2 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 95.517 | \n",
"
\n",
" \n",
" 3 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 111.270 | \n",
"
\n",
" \n",
" 4 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 112.372 | \n",
"
\n",
" \n",
" 5 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 559.995 | \n",
"
\n",
" \n",
" 6 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 95.726 | \n",
"
\n",
" \n",
" 7 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 94.766 | \n",
"
\n",
" \n",
" 8 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 109.571 | \n",
"
\n",
" \n",
" 9 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 107.159 | \n",
"
\n",
" \n",
" 10 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 977.535 | \n",
"
\n",
" \n",
" 11 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 185.605 | \n",
"
\n",
" \n",
" 12 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 95.104 | \n",
"
\n",
" \n",
" 13 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 94.432 | \n",
"
\n",
" \n",
" 14 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 108.724 | \n",
"
\n",
" \n",
" 15 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 117.619 | \n",
"
\n",
" \n",
" 16 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 348.486 | \n",
"
\n",
" \n",
" 17 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 846.000 | \n",
"
\n",
" \n",
" 18 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 94.466 | \n",
"
\n",
" \n",
" 19 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 95.613 | \n",
"
\n",
" \n",
" 20 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 122.818 | \n",
"
\n",
" \n",
" 21 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 119.784 | \n",
"
\n",
" \n",
" 22 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 546.494 | \n",
"
\n",
" \n",
" 23 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 95.593 | \n",
"
\n",
" \n",
" 24 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 94.503 | \n",
"
\n",
" \n",
" 25 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 107.671 | \n",
"
\n",
" \n",
" 26 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 106.924 | \n",
"
\n",
" \n",
" 27 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 987.803 | \n",
"
\n",
" \n",
" 28 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 189.837 | \n",
"
\n",
" \n",
" 29 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 95.180 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 258 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 843.000 | \n",
"
\n",
" \n",
" 259 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.443 | \n",
"
\n",
" \n",
" 260 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 94.301 | \n",
"
\n",
" \n",
" 261 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 113.357 | \n",
"
\n",
" \n",
" 262 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 113.219 | \n",
"
\n",
" \n",
" 263 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 487.053 | \n",
"
\n",
" \n",
" 264 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 103.937 | \n",
"
\n",
" \n",
" 265 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.329 | \n",
"
\n",
" \n",
" 266 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 1188.277 | \n",
"
\n",
" \n",
" 267 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 110.096 | \n",
"
\n",
" \n",
" 268 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.801 | \n",
"
\n",
" \n",
" 269 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 293.273 | \n",
"
\n",
" \n",
" 270 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 115.373 | \n",
"
\n",
" \n",
" 271 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.128 | \n",
"
\n",
" \n",
" 272 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 398.983 | \n",
"
\n",
" \n",
" 273 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 126.088 | \n",
"
\n",
" \n",
" 274 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 842.000 | \n",
"
\n",
" \n",
" 275 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 123.845 | \n",
"
\n",
" \n",
" 276 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 96.338 | \n",
"
\n",
" \n",
" 277 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 397.805 | \n",
"
\n",
" \n",
" 278 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 116.811 | \n",
"
\n",
" \n",
" 279 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 96.656 | \n",
"
\n",
" \n",
" 280 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 96.653 | \n",
"
\n",
" \n",
" 281 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 113.326 | \n",
"
\n",
" \n",
" 282 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 113.668 | \n",
"
\n",
" \n",
" 283 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 460.364 | \n",
"
\n",
" \n",
" 284 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 451.681 | \n",
"
\n",
" \n",
" 285 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 95.736 | \n",
"
\n",
" \n",
" 286 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 95.364 | \n",
"
\n",
" \n",
" 287 | \n",
" 99 | \n",
" A.SUTIL | \n",
" 116.468 | \n",
"
\n",
" \n",
"
\n",
"
288 rows \u00d7 3 columns
\n",
"
"
],
"output_type": "pyout",
"prompt_number": 3,
"text": [
" driver_no name time\n",
"0 1 S.VETTEL 846.000\n",
"1 1 S.VETTEL 94.784\n",
"2 1 S.VETTEL 95.517\n",
"3 1 S.VETTEL 111.270\n",
"4 1 S.VETTEL 112.372\n",
"5 1 S.VETTEL 559.995\n",
"6 1 S.VETTEL 95.726\n",
"7 1 S.VETTEL 94.766\n",
"8 1 S.VETTEL 109.571\n",
"9 1 S.VETTEL 107.159\n",
"10 1 S.VETTEL 977.535\n",
"11 1 S.VETTEL 185.605\n",
"12 1 S.VETTEL 95.104\n",
"13 1 S.VETTEL 94.432\n",
"14 1 S.VETTEL 108.724\n",
"15 1 S.VETTEL 117.619\n",
"16 1 S.VETTEL 348.486\n",
"17 3 D.RICCIARDO 846.000\n",
"18 3 D.RICCIARDO 94.466\n",
"19 3 D.RICCIARDO 95.613\n",
"20 3 D.RICCIARDO 122.818\n",
"21 3 D.RICCIARDO 119.784\n",
"22 3 D.RICCIARDO 546.494\n",
"23 3 D.RICCIARDO 95.593\n",
"24 3 D.RICCIARDO 94.503\n",
"25 3 D.RICCIARDO 107.671\n",
"26 3 D.RICCIARDO 106.924\n",
"27 3 D.RICCIARDO 987.803\n",
"28 3 D.RICCIARDO 189.837\n",
"29 3 D.RICCIARDO 95.180\n",
".. ... ... ...\n",
"258 77 V.BOTTAS 843.000\n",
"259 77 V.BOTTAS 93.443\n",
"260 77 V.BOTTAS 94.301\n",
"261 77 V.BOTTAS 113.357\n",
"262 77 V.BOTTAS 113.219\n",
"263 77 V.BOTTAS 487.053\n",
"264 77 V.BOTTAS 103.937\n",
"265 77 V.BOTTAS 93.329\n",
"266 77 V.BOTTAS 1188.277\n",
"267 77 V.BOTTAS 110.096\n",
"268 77 V.BOTTAS 93.801\n",
"269 77 V.BOTTAS 293.273\n",
"270 77 V.BOTTAS 115.373\n",
"271 77 V.BOTTAS 93.128\n",
"272 77 V.BOTTAS 398.983\n",
"273 77 V.BOTTAS 126.088\n",
"274 99 A.SUTIL 842.000\n",
"275 99 A.SUTIL 123.845\n",
"276 99 A.SUTIL 96.338\n",
"277 99 A.SUTIL 397.805\n",
"278 99 A.SUTIL 116.811\n",
"279 99 A.SUTIL 96.656\n",
"280 99 A.SUTIL 96.653\n",
"281 99 A.SUTIL 113.326\n",
"282 99 A.SUTIL 113.668\n",
"283 99 A.SUTIL 460.364\n",
"284 99 A.SUTIL 451.681\n",
"285 99 A.SUTIL 95.736\n",
"286 99 A.SUTIL 95.364\n",
"287 99 A.SUTIL 116.468\n",
"\n",
"[288 rows x 3 columns]"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"## Example of Using DataFrames on Parsed Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Select a Driver by Number"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df[df.driver_no == 1]"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" driver_no | \n",
" name | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 846.000 | \n",
"
\n",
" \n",
" 1 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 94.784 | \n",
"
\n",
" \n",
" 2 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 95.517 | \n",
"
\n",
" \n",
" 3 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 111.270 | \n",
"
\n",
" \n",
" 4 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 112.372 | \n",
"
\n",
" \n",
" 5 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 559.995 | \n",
"
\n",
" \n",
" 6 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 95.726 | \n",
"
\n",
" \n",
" 7 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 94.766 | \n",
"
\n",
" \n",
" 8 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 109.571 | \n",
"
\n",
" \n",
" 9 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 107.159 | \n",
"
\n",
" \n",
" 10 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 977.535 | \n",
"
\n",
" \n",
" 11 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 185.605 | \n",
"
\n",
" \n",
" 12 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 95.104 | \n",
"
\n",
" \n",
" 13 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 94.432 | \n",
"
\n",
" \n",
" 14 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 108.724 | \n",
"
\n",
" \n",
" 15 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 117.619 | \n",
"
\n",
" \n",
" 16 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 348.486 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"output_type": "pyout",
"prompt_number": 4,
"text": [
" driver_no name time\n",
"0 1 S.VETTEL 846.000\n",
"1 1 S.VETTEL 94.784\n",
"2 1 S.VETTEL 95.517\n",
"3 1 S.VETTEL 111.270\n",
"4 1 S.VETTEL 112.372\n",
"5 1 S.VETTEL 559.995\n",
"6 1 S.VETTEL 95.726\n",
"7 1 S.VETTEL 94.766\n",
"8 1 S.VETTEL 109.571\n",
"9 1 S.VETTEL 107.159\n",
"10 1 S.VETTEL 977.535\n",
"11 1 S.VETTEL 185.605\n",
"12 1 S.VETTEL 95.104\n",
"13 1 S.VETTEL 94.432\n",
"14 1 S.VETTEL 108.724\n",
"15 1 S.VETTEL 117.619\n",
"16 1 S.VETTEL 348.486"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Or, Select by Name"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df[df.name == 'V.BOTTAS']"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" driver_no | \n",
" name | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 258 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 843.000 | \n",
"
\n",
" \n",
" 259 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.443 | \n",
"
\n",
" \n",
" 260 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 94.301 | \n",
"
\n",
" \n",
" 261 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 113.357 | \n",
"
\n",
" \n",
" 262 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 113.219 | \n",
"
\n",
" \n",
" 263 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 487.053 | \n",
"
\n",
" \n",
" 264 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 103.937 | \n",
"
\n",
" \n",
" 265 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.329 | \n",
"
\n",
" \n",
" 266 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 1188.277 | \n",
"
\n",
" \n",
" 267 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 110.096 | \n",
"
\n",
" \n",
" 268 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.801 | \n",
"
\n",
" \n",
" 269 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 293.273 | \n",
"
\n",
" \n",
" 270 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 115.373 | \n",
"
\n",
" \n",
" 271 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.128 | \n",
"
\n",
" \n",
" 272 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 398.983 | \n",
"
\n",
" \n",
" 273 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 126.088 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"output_type": "pyout",
"prompt_number": 5,
"text": [
" driver_no name time\n",
"258 77 V.BOTTAS 843.000\n",
"259 77 V.BOTTAS 93.443\n",
"260 77 V.BOTTAS 94.301\n",
"261 77 V.BOTTAS 113.357\n",
"262 77 V.BOTTAS 113.219\n",
"263 77 V.BOTTAS 487.053\n",
"264 77 V.BOTTAS 103.937\n",
"265 77 V.BOTTAS 93.329\n",
"266 77 V.BOTTAS 1188.277\n",
"267 77 V.BOTTAS 110.096\n",
"268 77 V.BOTTAS 93.801\n",
"269 77 V.BOTTAS 293.273\n",
"270 77 V.BOTTAS 115.373\n",
"271 77 V.BOTTAS 93.128\n",
"272 77 V.BOTTAS 398.983\n",
"273 77 V.BOTTAS 126.088"
]
}
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Select the Lowest Time"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df[df.time == min(df.time)]"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" driver_no | \n",
" name | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 51 | \n",
" 6 | \n",
" N.ROSBERG | \n",
" 92.506 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"output_type": "pyout",
"prompt_number": 6,
"text": [
" driver_no name time\n",
"51 6 N.ROSBERG 92.506"
]
}
],
"prompt_number": 6
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sort Rows by a Given Column"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"df.sort(columns='time')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" driver_no | \n",
" name | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 51 | \n",
" 6 | \n",
" N.ROSBERG | \n",
" 92.506 | \n",
"
\n",
" \n",
" 45 | \n",
" 6 | \n",
" N.ROSBERG | \n",
" 92.629 | \n",
"
\n",
" \n",
" 254 | \n",
" 44 | \n",
" L.HAMILTON | \n",
" 92.703 | \n",
"
\n",
" \n",
" 248 | \n",
" 44 | \n",
" L.HAMILTON | \n",
" 92.946 | \n",
"
\n",
" \n",
" 52 | \n",
" 6 | \n",
" N.ROSBERG | \n",
" 92.950 | \n",
"
\n",
" \n",
" 255 | \n",
" 44 | \n",
" L.HAMILTON | \n",
" 92.982 | \n",
"
\n",
" \n",
" 271 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.128 | \n",
"
\n",
" \n",
" 265 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.329 | \n",
"
\n",
" \n",
" 259 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.443 | \n",
"
\n",
" \n",
" 149 | \n",
" 19 | \n",
" F.MASSA | \n",
" 93.527 | \n",
"
\n",
" \n",
" 155 | \n",
" 19 | \n",
" F.MASSA | \n",
" 93.527 | \n",
"
\n",
" \n",
" 143 | \n",
" 19 | \n",
" F.MASSA | \n",
" 93.551 | \n",
"
\n",
" \n",
" 247 | \n",
" 44 | \n",
" L.HAMILTON | \n",
" 93.611 | \n",
"
\n",
" \n",
" 44 | \n",
" 6 | \n",
" N.ROSBERG | \n",
" 93.671 | \n",
"
\n",
" \n",
" 119 | \n",
" 14 | \n",
" F.ALONSO | \n",
" 93.675 | \n",
"
\n",
" \n",
" 132 | \n",
" 14 | \n",
" F.ALONSO | \n",
" 93.740 | \n",
"
\n",
" \n",
" 268 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 93.801 | \n",
"
\n",
" \n",
" 125 | \n",
" 14 | \n",
" F.ALONSO | \n",
" 93.858 | \n",
"
\n",
" \n",
" 128 | \n",
" 14 | \n",
" F.ALONSO | \n",
" 94.005 | \n",
"
\n",
" \n",
" 152 | \n",
" 19 | \n",
" F.MASSA | \n",
" 94.059 | \n",
"
\n",
" \n",
" 30 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 94.075 | \n",
"
\n",
" \n",
" 159 | \n",
" 20 | \n",
" K.MAGNUSSEN | \n",
" 94.229 | \n",
"
\n",
" \n",
" 171 | \n",
" 20 | \n",
" K.MAGNUSSEN | \n",
" 94.242 | \n",
"
\n",
" \n",
" 260 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 94.301 | \n",
"
\n",
" \n",
" 201 | \n",
" 22 | \n",
" J.BUTTON | \n",
" 94.317 | \n",
"
\n",
" \n",
" 13 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 94.432 | \n",
"
\n",
" \n",
" 165 | \n",
" 20 | \n",
" K.MAGNUSSEN | \n",
" 94.437 | \n",
"
\n",
" \n",
" 18 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 94.466 | \n",
"
\n",
" \n",
" 144 | \n",
" 19 | \n",
" F.MASSA | \n",
" 94.483 | \n",
"
\n",
" \n",
" 120 | \n",
" 14 | \n",
" F.ALONSO | \n",
" 94.497 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 134 | \n",
" 17 | \n",
" J.BIANCHI | \n",
" 842.000 | \n",
"
\n",
" \n",
" 34 | \n",
" 4 | \n",
" M.CHILTON | \n",
" 842.000 | \n",
"
\n",
" \n",
" 205 | \n",
" 25 | \n",
" J.VERGNE | \n",
" 842.000 | \n",
"
\n",
" \n",
" 219 | \n",
" 26 | \n",
" D.KVYAT | \n",
" 842.000 | \n",
"
\n",
" \n",
" 109 | \n",
" 13 | \n",
" P.MALDONADO | \n",
" 842.000 | \n",
"
\n",
" \n",
" 258 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 843.000 | \n",
"
\n",
" \n",
" 55 | \n",
" 7 | \n",
" K.RAIKKONEN | \n",
" 843.000 | \n",
"
\n",
" \n",
" 245 | \n",
" 44 | \n",
" L.HAMILTON | \n",
" 843.000 | \n",
"
\n",
" \n",
" 42 | \n",
" 6 | \n",
" N.ROSBERG | \n",
" 843.000 | \n",
"
\n",
" \n",
" 142 | \n",
" 19 | \n",
" F.MASSA | \n",
" 843.000 | \n",
"
\n",
" \n",
" 118 | \n",
" 14 | \n",
" F.ALONSO | \n",
" 844.000 | \n",
"
\n",
" \n",
" 188 | \n",
" 22 | \n",
" J.BUTTON | \n",
" 845.000 | \n",
"
\n",
" \n",
" 158 | \n",
" 20 | \n",
" K.MAGNUSSEN | \n",
" 845.000 | \n",
"
\n",
" \n",
" 17 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 846.000 | \n",
"
\n",
" \n",
" 0 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 846.000 | \n",
"
\n",
" \n",
" 81 | \n",
" 9 | \n",
" M.ERICSSON | \n",
" 847.000 | \n",
"
\n",
" \n",
" 220 | \n",
" 26 | \n",
" D.KVYAT | \n",
" 849.817 | \n",
"
\n",
" \n",
" 208 | \n",
" 25 | \n",
" J.VERGNE | \n",
" 874.166 | \n",
"
\n",
" \n",
" 66 | \n",
" 7 | \n",
" K.RAIKKONEN | \n",
" 934.009 | \n",
"
\n",
" \n",
" 10 | \n",
" 1 | \n",
" S.VETTEL | \n",
" 977.535 | \n",
"
\n",
" \n",
" 27 | \n",
" 3 | \n",
" D.RICCIARDO | \n",
" 987.803 | \n",
"
\n",
" \n",
" 198 | \n",
" 22 | \n",
" J.BUTTON | \n",
" 1036.979 | \n",
"
\n",
" \n",
" 43 | \n",
" 6 | \n",
" N.ROSBERG | \n",
" 1116.970 | \n",
"
\n",
" \n",
" 246 | \n",
" 44 | \n",
" L.HAMILTON | \n",
" 1125.072 | \n",
"
\n",
" \n",
" 126 | \n",
" 14 | \n",
" F.ALONSO | \n",
" 1144.167 | \n",
"
\n",
" \n",
" 150 | \n",
" 19 | \n",
" F.MASSA | \n",
" 1177.634 | \n",
"
\n",
" \n",
" 266 | \n",
" 77 | \n",
" V.BOTTAS | \n",
" 1188.277 | \n",
"
\n",
" \n",
" 50 | \n",
" 6 | \n",
" N.ROSBERG | \n",
" 1201.803 | \n",
"
\n",
" \n",
" 253 | \n",
" 44 | \n",
" L.HAMILTON | \n",
" 1214.207 | \n",
"
\n",
" \n",
" 166 | \n",
" 20 | \n",
" K.MAGNUSSEN | \n",
" 1239.418 | \n",
"
\n",
" \n",
"
\n",
"
288 rows \u00d7 3 columns
\n",
"
"
],
"output_type": "pyout",
"prompt_number": 7,
"text": [
" driver_no name time\n",
"51 6 N.ROSBERG 92.506\n",
"45 6 N.ROSBERG 92.629\n",
"254 44 L.HAMILTON 92.703\n",
"248 44 L.HAMILTON 92.946\n",
"52 6 N.ROSBERG 92.950\n",
"255 44 L.HAMILTON 92.982\n",
"271 77 V.BOTTAS 93.128\n",
"265 77 V.BOTTAS 93.329\n",
"259 77 V.BOTTAS 93.443\n",
"149 19 F.MASSA 93.527\n",
"155 19 F.MASSA 93.527\n",
"143 19 F.MASSA 93.551\n",
"247 44 L.HAMILTON 93.611\n",
"44 6 N.ROSBERG 93.671\n",
"119 14 F.ALONSO 93.675\n",
"132 14 F.ALONSO 93.740\n",
"268 77 V.BOTTAS 93.801\n",
"125 14 F.ALONSO 93.858\n",
"128 14 F.ALONSO 94.005\n",
"152 19 F.MASSA 94.059\n",
"30 3 D.RICCIARDO 94.075\n",
"159 20 K.MAGNUSSEN 94.229\n",
"171 20 K.MAGNUSSEN 94.242\n",
"260 77 V.BOTTAS 94.301\n",
"201 22 J.BUTTON 94.317\n",
"13 1 S.VETTEL 94.432\n",
"165 20 K.MAGNUSSEN 94.437\n",
"18 3 D.RICCIARDO 94.466\n",
"144 19 F.MASSA 94.483\n",
"120 14 F.ALONSO 94.497\n",
".. ... ... ...\n",
"134 17 J.BIANCHI 842.000\n",
"34 4 M.CHILTON 842.000\n",
"205 25 J.VERGNE 842.000\n",
"219 26 D.KVYAT 842.000\n",
"109 13 P.MALDONADO 842.000\n",
"258 77 V.BOTTAS 843.000\n",
"55 7 K.RAIKKONEN 843.000\n",
"245 44 L.HAMILTON 843.000\n",
"42 6 N.ROSBERG 843.000\n",
"142 19 F.MASSA 843.000\n",
"118 14 F.ALONSO 844.000\n",
"188 22 J.BUTTON 845.000\n",
"158 20 K.MAGNUSSEN 845.000\n",
"17 3 D.RICCIARDO 846.000\n",
"0 1 S.VETTEL 846.000\n",
"81 9 M.ERICSSON 847.000\n",
"220 26 D.KVYAT 849.817\n",
"208 25 J.VERGNE 874.166\n",
"66 7 K.RAIKKONEN 934.009\n",
"10 1 S.VETTEL 977.535\n",
"27 3 D.RICCIARDO 987.803\n",
"198 22 J.BUTTON 1036.979\n",
"43 6 N.ROSBERG 1116.970\n",
"246 44 L.HAMILTON 1125.072\n",
"126 14 F.ALONSO 1144.167\n",
"150 19 F.MASSA 1177.634\n",
"266 77 V.BOTTAS 1188.277\n",
"50 6 N.ROSBERG 1201.803\n",
"253 44 L.HAMILTON 1214.207\n",
"166 20 K.MAGNUSSEN 1239.418\n",
"\n",
"[288 rows x 3 columns]"
]
}
],
"prompt_number": 7
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Seaborn Works Well for Statistical Plots\n",
"Pandas has some built-in plotting functionality as well. One thing to notice is that the tools built around dataframes can infer information from the DataFrame or Series that wouldn't be available with simple arrays, like the x axis labeled as 'time'."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"sns.distplot(df.time)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 8,
"text": [
""
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAESCAYAAAAMifkAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlwHOd55/HvnLgP4iJ4QOL5yCRFeyXLOixnfcqhZFtM\nVRzL2jiy5NSKiaLEu+WyYzu12d2qTSWyc2gVxSplFTlyNrYUZx0Xk+gwfWnlVUyLEnWS1mveAEgC\nIG5gcM1M7x/TQ0EQgB6Qc4H8fapQmO553+6nG5h+pt+3+20QERERERERERERERERERERERERERG5\nKISCCpjZDuBeIAI85Jy7Z54y9wE3Agngdufcfn/+w8BHgF7n3PZ56n0O+CrQ4pwbOJ8NERGRwgkv\n9qaZRYD7gR3AVuBWM9syp8xNwCbn3GbgTuCBWW9/3a8737I7gBuA4+ccvYiIFMWiyQK4GjjknDvm\nnJsBHgV2zilzM/AIgHNuL9BoZu3+9DPA4ALL/nPgC+cauIiIFE9QslgDdM6a7vLnLbXMm5jZTqDL\nOfdyjnGKiEgJRQPe93Jczty+jwXrmVk18GUyTVAL1RcRkTISlCy6gY5Z0x1kzhwWK7PWn7eQjcA6\n4CUzy5Z/3syuds71LlQpnU57oZByiojIUoTydOAMShb7gM1mtg44CdwC3DqnzG7gbuBRM7sWGHLO\n9Sy0QOfcK8DK7LSZHQXeGXQ1VCgUoq9vNCDc0mttrSv7OJdDjKA4801x5tdyiTNfFu2zcM4lySSC\np4ADwGPOuYNmtsvMdvllHgeOmNkh4EHgrmx9M/sW8GzmpXWa2R3zrCbXpi4RESmRZdOu43metxyy\n+HL4trEcYgTFmW+KM7+WS5xtbfV5Oc4HXQ0lIiKiZCEiIsGULEREJJCShYiIBFKyEBGRQEoWIiIS\nSMlCREQCKVmIiEggJQsREQmkZCEiIoGULEREJJCShYiIBFKyEBGRQEHPs5AS8TyPycnJnMvHYjGi\nUf05RaQwdHQpU13dJ9n/izNEIrn9iVY1hrny7VsKHJWIXKyULMpYdW090Vg8p7LhyHiBoxGRi5n6\nLEREJJCShYiIBFKyEBGRQEoWIiISSMlCREQCKVmIiEggJQsREQmU030WZrYDuBeIAA855+6Zp8x9\nwI1AArjdObffn/8w8BGg1zm3fVb5rwIfBaaBw8Adzrnh89scEREphMAzCzOLAPcDO4CtwK1mtmVO\nmZuATc65zcCdwAOz3v66X3eu7wHbnHPvABzwpXPaAhERKbhcmqGuBg45544552aAR4Gdc8rcDDwC\n4JzbCzSaWbs//QwwOHehzrk9zrm0P7kXWHtumyAiIoWWS7JYA3TOmu7y5y21zGI+Azy+hPIiIlJE\nufRZeDkuK3Qu9czsD4Bp59w3g8q2ttblGEpp5SPO8YlaakcTxHIcG6qxylvSei+mfVkMijO/FGf5\nySVZdAMds6Y7yJw5LFZmrT9vUWZ2O3AT8MEc4qCvbzSXYiXV2lqXlzgH+scYG5smGksHFwYiU4mc\n15uvGAtNceaX4syv5RJnvuTSDLUP2Gxm68wsDtwC7J5TZjdwG4CZXQsMOed6Fluof4XV54Gdzrnc\nH9wgIiJFF5gsnHNJ4G7gKeAA8Jhz7qCZ7TKzXX6Zx4EjZnYIeBC4K1vfzL4FPJt5aZ1mdof/1l8C\ntcAeM9tvZl/L54aJiEj+5HSfhXPuCeCJOfMenDN99wJ1b11g/uYcYxQRkRLTHdwiIhJIyUJERAIp\nWYiISCAlCxERCaRkISIigZQsREQkkJKFiIgEUrIQEZFAShYiIhJIyUJERAIpWYiISCAlCxERCaRk\nISIigZQsREQkkJKFiIgEUrIQEZFAShYiIhJIyUJERAIpWYiISCAlCxERCaRkISIigZQsREQkkJKF\niIgEigYVMLMdwL1ABHjIOXfPPGXuA24EEsDtzrn9/vyHgY8Avc657bPKNwGPAZcCx4BPOOeGzntr\nRESkIBY9szCzCHA/sAPYCtxqZlvmlLkJ2OSc2wzcCTww6+2v+3Xn+iKwxzlnwA/8aRERKVNBzVBX\nA4ecc8ecczPAo8DOOWVuBh4BcM7tBRrNrN2ffgYYnGe5Z+v4v3/l3MIXEZFiCEoWa4DOWdNd/ryl\nlplrpXOux3/dA6wMKC8iIiUU1Gfh5bic0DnWwznnmVlO5Vtb63JdbEnlI87xiVpqRxPEYvGcyjdW\neUta78W0L4tBceaX4iw/QcmiG+iYNd1B5sxhsTJr/XmL6TGzdufcaTNbBfTmEmxf32guxUqqtbUu\nL3EO9I8xNjZNNJbOqXxkKpHzevMVY6EpzvxSnPm1XOLMl6BmqH3AZjNbZ2Zx4BZg95wyu4HbAMzs\nWmBoVhPTQnYDn/Zffxr47pKiFhGRolo0WTjnksDdwFPAAeAx59xBM9tlZrv8Mo8DR8zsEPAgcFe2\nvpl9C3g289I6zewO/60/AW4wMwd8wJ8WEZEyFXifhXPuCeCJOfMenDN99wJ1b11g/gDwodzDFBGR\nUtId3CIiEkjJQkREAilZiIhIICULEREJpGQhIiKBlCxERCSQkoWIiARSshARkUBKFiIiEkjJQkRE\nAilZiIhIICULEREJpGQhIiKBlCxERCSQkoWIiARSshARkUBKFiIiEkjJQkREAilZiIhIICULEREJ\npGQhIiKBlCxERCSQkoWIiASKBhUwsx3AvUAEeMg5d888Ze4DbgQSwO3Ouf2L1TWzq4H7gRiQBO5y\nzj2Xly0SEZG8W/TMwswiZA7qO4CtwK1mtmVOmZuATc65zcCdwAM51P0K8F+cc1cAf+hPi4hImQpq\nhroaOOScO+acmwEeBXbOKXMz8AiAc24v0Ghm7QF1TwEN/utGoPu8t0RERAomqBlqDdA5a7oLuCaH\nMmuA1YvU/SLwEzP7UzIJ67qlhS0iIsUUlCy8HJcTWuJ6/wb4PefcP5nZrwEPAzcEVWptrVviakoj\nH3GOT9RSO5ogFovnVL6xylvSei+mfVkMijO/FGf5CUoW3UDHrOkOMmcIi5VZ65eJLVL3aufch/zX\n/wg8lEuwfX2juRQrqdbWurzEOdA/xtjYNNFYOqfykalEzuvNV4yFpjjzS3Hm13KJM1+C+iz2AZvN\nbJ2ZxYFbgN1zyuwGbgMws2uBIedcT0DdQ2b2Xv/1BwB3/psiIiKFsmiycM4lgbuBp4ADwGPOuYNm\ntsvMdvllHgeOmNkh4EHgrsXq+ou+E/iKmb0I/A9/WkREylTgfRbOuSeAJ+bMe3DO9N251vXn7+Ot\nHeUiIlKmdAe3iIgEUrIQEZFAShYiIhJIyUJERAIpWYiISCAlCxERCaRkISIigZQsREQkkJKFiIgE\nUrIQEZFAShYiIhJIyUJERAIpWYiISCAlCxERCaRkISIigZQsREQkkJKFiIgEUrIQEZFAShYiIhJI\nyUJERAIpWYiISCAlCxERCaRkISIigaJBBcxsB3AvEAEecs7dM0+Z+4AbgQRwu3Nuf1BdM/td4C4g\nBfyrc+73z39zRESkEBY9szCzCHA/sAPYCtxqZlvmlLkJ2OSc2wzcCTwQVNfM3g/cDLzdOXc58Kf5\n3CgREcmvoGaoq4FDzrljzrkZ4FFg55wyNwOPADjn9gKNZtYeUPe3gT/25+Oc68vL1oiISEEEJYs1\nQOes6S5/Xi5lVi9SdzPw783sp2b2YzO7aqmBi4hI8QT1WXg5Lid0Dutd4Zy71szeBfwDsCGoUmtr\n3RJXUxr5iHN8opba0QSxWDyn8o1V3pLWezHty2JQnPmlOMtPULLoBjpmTXeQOUNYrMxav0xskbpd\nwHcAnHPPmVnazJqdc/2LBdPXNxoQbum1ttblJc6B/jEGhyY53ttPJBKiIhZhZVM1FbHIvOUjU4mc\n15uvGAtNceaX4syv5RJnvgQli33AZjNbB5wEbgFunVNmN3A38KiZXQsMOed6zKx/kbrfBT4APG1m\nBsSDEsXF6KXDg7iukbPTa1pq+OBVa0sYkYhcrBbts3DOJckkgqeAA8BjzrmDZrbLzHb5ZR4HjpjZ\nIeBBMpfDLljXX/TDwAYzewX4FnBb3rdsmRudSHL45Cg1lVGu395Oc30F3WfGGRiZLHVoInIRCrzP\nwjn3BPDEnHkPzpm+O9e6/vwZ4DeWFOlF5tkDA6TSHts3NLNxTQMV8Qg/fL6b144O8EvvWF3q8ETk\nIqM7uMvQSGKa59wQVRURNq6tBzJNUI21cY6dHmUsMVPiCEXkYqNkUYb2PNfJTMpj66UNRMKZP1Eo\nFGLb+iY8Dw4cGyhxhCJysVGyKDOe5/HT13qojIfZuPrNl+WtX1VPdWWUQ93DJFPpEkUoIhcjJYsy\n0zc0Qf/IJOtXVhONvPnPEw6HWNdeRzLl0Tc0UaIIReRipGRRZg4eHwRgQ3v1vO+3N2Xmn+5PFC0m\nERElizKTTRbrF0gWbU1VhEJwekDJQkSKR8mijHiex8+PD9JQG6elfv5hPuLRCM31lZwZnmQmqX4L\nESkOJYsy0n1mnJHEDFsvXUEotPBwW+3N1Xge9A7q7EJEikPJooxkm6DedumKRctl+y1Oqd9CRIpE\nyaKMHDyWSRZbApJF24oqwqEQPeq3EJEiUbIoE6l0mtc7B2lrrKKloWrRstFImNbGSvpHppiaSRUp\nQhG5mClZlInuvnEmplLYJY05lW9vzjRF6exCRIpByaJMHO/JjIu/flV9TuVbGzNnH/3DGoVWRApP\nyaJMnDg9BsClK3N78lZTfSUA/SNTBYtJRCRLyaJMHOsZIRwK0dFWk1P5yniEmsooAyOTeF6uT78V\nETk3ShZlIJ326OwZY3VLDbHo/I9NnU9zQyWT0ykSk8kCRiciomRRFk4NJJhOprm0vXZJ9ZrPNkWp\n30JECkvJogwcP515znau/RVZ6rcQkWJRsigDx/3O7XXtuV0JldXcUAHAgK6IEpECU7IoA8d7RgkB\nHW1La4aqjEepqYzSr05uESkwJYsSS3seJ3pGaW+upiKee+d2VraTe3xSI9CKSOEoWZRY7+AEk9Mp\nLm1fWn9FVrbfond4Op9hiYi8iZJFiR0/nblze90SO7ezmusz/RZKFiJSSNGgAma2A7gXiAAPOefu\nmafMfcCNQAK43Tm3P5e6ZvY54KtAi3Nu4Dy3ZVk60ZtJFh3nmCzOnlkMzeQtJhGRuRY9szCzCHA/\nsAPYCtxqZlvmlLkJ2OSc2wzcCTyQS10z6wBuAI7nbWuWoa7ecWDpndtZVRVRqiqinBlRshCRwglq\nhroaOOScO+acmwEeBXbOKXMz8AiAc24v0Ghm7TnU/XPgC3nYhmWtq2+MFXUV1FbFznkZTXUVjE2m\nGJtQwhCRwghKFmuAzlnTXf68XMqsXqiume0EupxzL59DzBeMsYkZBkenWNt6bmcVWSv8fotOf+Ra\nEZF8C+qzyPXi/YUfGD2HmVUBXybTBLWk+q2t59auX2y5xnn68BkA7NIVb6kzPlFL7WiCWCweuJzV\nrbW8emSAgcRMzuu+0PZlqSnO/FKc5ScoWXQDHbOmO8icISxWZq1fJrZA3Y3AOuAlM8uWf97MrnbO\n9S4WTF9f+X9zbm2tyznOV/3NbaqNv6XOQP8YY2PTRGPB909UxTL3Zxw80s/1W1fmNcZSUpz5pTjz\na7nEmS9ByWIfsNnM1gEngVuAW+eU2Q3cDTxqZtcCQ865HjPrn6+uc+4gcPaIZmZHgXdejFdDdfVl\nhvnoOM9mqLqaGNFwiBM9Y/kIS0TkLRbts3DOJckkgqeAA8BjzrmDZrbLzHb5ZR4HjpjZIeBB4K7F\n6s6zmot2nIrO3nEi4dDZR6Seq3AoRHN9jFP94yRTupNbRPIv8D4L59wTwBNz5j04Z/ruXOvOU2ZD\ncJgXnrTn0X1mjFXN1UQj539vZGtDjJ6haU6eGeeSc7xnQ0RkIbqDu0T6hiaYnkmz9hzvr5irpT5z\n6a2aokSkEJQsSqSrNz/9FVmtfrLo7FWyEJH8U7Ioka6+zJ3b+TqzaK6PEQI6ey+eqzNEpHiULEok\ne2ZxvjfkZcWjYdpWVNHZO6ZnW4hI3ilZlEhn3xg1lVEaa4NvustVR1st45NJBvSYVRHJMyWLEpia\nTtE3OEFHWy2hUM43vwfKjlyrfgsRyTclixLoPjOOR/6aoLKyI9eeUL+FiOSZkkUJZO/czlfndtYl\n/vI6dfmsiOSZkkUJdOa5czsrO9S5mqFEJN+ULEqgq3eMELCmpSavyw2FQnS01dI7NMHEVDKvyxaR\ni5uSRZF5nkdX3xhtK6qoiEfyvvxsv0W2qUtEJB+ULIpsaGya8clk3vsrss52cqvfQkTySMmiyArV\nX5F1iS6fFZECULIosu6+wiaLVc3VRMIhDfshInmlZFFkndkHHrXlt3M7KxoJs6alhq6+cVJpPdtC\nRPJDyaLIunrHqIhFaGmsKtg6OtpqmUmm6RmYKNg6ROTiomRRRMlUmlP9Cda01hDO4zAfc2WH/TjR\no6YoEckPJYsiOnlmnFTaK1h/Rda69kyyOHpKyUJE8kPJooiOn84cvLMH80K5tL2OcCjEkVPDBV2P\niFw8lCyK6Fg2WawqbLKoiEVY21bD8dNjJFPq5BaR86dkUUTHTo8QjYRY01LYZiiAjasbSKbSut9C\nRPJCyaJIsgfuta21xKKF3+0bVtcDcLhbTVEicv6ULIqku2+cZMoreH9FVjZZHDk1UpT1iciFLZpL\nITPbAdwLRICHnHP3zFPmPuBGIAHc7pzbv1hdM/sq8FFgGjgM3OGcu2C/Bh87nTlor1tVX5T1rWyq\nproiypGTShYicv4CzyzMLALcD+wAtgK3mtmWOWVuAjY55zYDdwIP5FD3e8A259w7AAd8KS9bVKaO\nFelKqKxwKMSG1fX0Dk4wmpguyjpF5MKVSzPU1cAh59wx59wM8Ciwc06Zm4FHAJxze4FGM2tfrK5z\nbo9zLnupzl5g7XlvTRk7dmqUaCTM6jw/w2Ix2aaoo2qKEpHzlEuyWAN0zpru8uflUmZ1DnUBPgM8\nnkMsy9JMMkVX3xiXrKwlGileN9GG1Q0AHO5WshCR85NLn4WX47LOafwKM/sDYNo5982gsq2txWnC\nOV9z43QnBkmlPbasb855G8YnaqkdTRCLxXMq31jlvWXZ76qugG+/RGff+FveW677slwpzvxSnOUn\nl2TRDXTMmu4gc4awWJm1fpnYYnXN7HbgJuCDuQTb11f+w1e0tta9Jc4Xf94DQFtDRc7bMNA/xtjY\nNNFYbjfVRaYS8y57bWstrx3tp/vkEPFYZMEYy5HizC/FmV/LJc58yaVNZB+w2czWmVkcuAXYPafM\nbuA2ADO7FhhyzvUsVte/SurzwE7n3GRetqZM/aJrCHijWaiYtq1fwUwyzS+6LtgLzUSkCAKThXMu\nCdwNPAUcAB5zzh00s11mtssv8zhwxMwOAQ8Cdy1W11/0XwK1wB4z229mX8vvppUHz/N4/cQQddUx\nVjdXF33929Y3AfDasYGir1tELhw53WfhnHsCeGLOvAfnTN+da11//ubcw1y++oYnGRyd4p2XtRIq\n4LDkC7G1jUQjYV47OgDvL/rqReQCoTu4C+z144MAvO2SFSVZfzwWwToa6OwdY3hc91uIyLlRsiiw\n1zsz/RWXdTSWLIZt6zJNUQfUFCUi5yinZig5d6+fGKKmMsrq1uLdjDfXtvVNfPvHh3nt6ADXbWsv\nWRxSOp7nMTw8zMhI7lfv1NXVl6TpVMqTkkUBnRmaoH9kkis2txT0MapB1rbVUl8d47VjA3herrfN\nyIVkdHSEp/6tk7SX20d+IjHODddsor6++FfwSXlSsiigbBNUqforssKhENvWN/Nvr53m8MkR2tqK\nM5ihlJfq6hrS5HaTp8hc6rMooNdP+P0Vl5SuvyLrum0rAXj2lVMljkREliMliwLxPI+Dxweoroiy\ntrXwT8YLsnVdE421cfYe7GV6JlXqcERkmVGyKJBjp0fpH5ni7ZuaCYdL30kYDoe47vJ2JqaS7H31\ndKnDEZFlRsmiQJ5/vQ+Aqy5rK3Ekb7j+8lUA/GDfiRJHIiLLjZJFAXiex77Xe6mIRbjcH26jHKxu\nqWHD6nr2v97L4OhUqcMRkWVEyaIAuvrG6R2cYPvG5rMjvZaL67evIu3BD1+YO3CwiMjClCwK4PnX\newG46rLWEkfyVu/e1k5zQyXfe66T/uELerBfEckjJYsCeP71PmLRMNs3NJc6lLeoiEe47aYtzCTT\n/OPTh0sdjogsE7opL8+OnRqh+8w4V2xuoaqiPHfv+67s4J9+dIi9B3r44DvXsmnNwnfpep7H6OjS\nHsuqYSJELjzleTRbxr779CEA3rN9VYkjWVg4HOKTH9zMn/z9C3z98YP8/q9fSX31/Hf2jo6OsGfv\nIaqqcxvbainDRAQlong8/aaxjJSECiOV9jgzPMHwWGZU4nAoRHUsRVpDw8gsShZ5NDg6xdMvdNHe\nVM07NreUOpxFWUcjv3x1B0/9rJM/e/RFPn/rFdRWxeYtW1VdQ3VN/p81HJSIamsGGBvPXLWlsYry\nr3cwwWtHBznVP04y9dbE8G8HB7jS2vjlqy9hdUvpBsKU8qBkkUd79nWSTHnsuOaSkg4cmKtPvH8T\n0zNpfrS/m69+az+f+rCxeW1xhyZZLBHV1FaSRp3w+TYwMslzB3vpGZwAoKEmTntzNc31lYTDkEx5\nnDozwvBYkmdePsUzL5/iis0tfPx9G1nVrKRxsVKyyJPEZJIf7+9mRV3FshkGPBQK8esfNjzP48cv\nnuSP//cLbLl0BW/f2MyalhrqquOMjycYGJ1mdCpBMuWRSqf9b6Ee4VCISCRMPBomHosQj4ZJpdIa\n2bZMJVNpXjrcx6tHB/A8WNNSw+UbmljZ9NbH/a5tivDuy9s50jPD4z89zv5fnOHlw/3ccFUHH7t+\nXdn2x0nh6C+eJ3v2dTI5neKWGy4jFl0+F5mFQyFu2/E2rru8nd0/OcprxwY56D/d71zt/ulpqiti\n1FRGqa6MUV0ZPfs6Gg4xk0qTTKZJTE5lvt2GhkmnM4kolfZIpz0ikTAVsQixaJjqiiixcIraqkHW\nrISVTdULNpnJ/I6cGmP3sycZGZ+hpjLKdZe3BzYthUMhrrRWrtjcwgvuDI/98Bc8+bMTPPvaaT7+\n3o28e3v7sjiDlvxQssiD46dH+Zdnj9FYG+fG69aRGFt+TSeb1zbyuU9ewemBBJ29Y5w8M05iMsn0\n9BQn+8eprKwkGg4RjYSJREKEgJTnkUp5TCfTTM+kmJ5JMTE5TWU8ylTSY3wySf/I5Lzt4fMJhzKd\n7+FQiFTaI5V+c72Xj77RGV5TGaW9uZr2FdWsbKqm3f9pW1FVdjdCltLEVJLvPH2EH77QhQe87dJG\nrtjcuqQvNKFQiHde1sr2DU089bMT/OtPj/Pw4wf50f5u/sMNm9m4Wv1IFwMli/M0PZPir//5NVJp\nj9/8yFZqqmLLMllkZQ+6WSMjw/zklVM5d3Anxkd5z/ZVb+qInp5JMT6ZJDE5QyrtEYuGiUXCTEyM\n8/zrvdTW1Z1NErPV1FTQ1z9OYmqGwaFR2ptrGZ+CnoEEpwcnOHZqlMPdb76aKgQ01VfStqKKlobK\nzE9j9nUVDbXxi+bb8KtH+nnkyZ/TPzJFW2MlV122gpYV5/4sk3gswseuX8/121fxDz86xM8O9vJH\n33ie6y9v51fft5HG2oo8Ri/lRsniPHiex6M/+AWn+hN86J1r2VZG40CVk3gsQjwWYUXdmw8mI+Fp\n4rEw0cj833LDoRDVldHMTzTJe7a3vSkJJVNpzgxPcnogwen+BD2DCXoGEpwaSCzYlBaNhFhRF6ep\nroLmujhN9RU01cXZsLaFVc01y6oJcSE9gwm+/aPDvOD6iIRDfOzd63jv9hW8enyIdB6W31RfyW/t\nvJwPXDnEN/c4/t+rp9nn+rj53ev40FVriUV1ZnchCkwWZrYDuBeIAA855+6Zp8x9wI1AArjdObd/\nsbpm1gQ8BlwKHAM+4ZwbyscGFUsyleYbT77OT145xZqWGj7+vo2lDumCttA9GdVR2NAWY0NbA/BG\nIhkYHOLpl3pIheKMT6YYn0qRmEwyPplieGyGvqG5AykeJRyCloYK2puqaG+qYlVTJe1NVbQ2VLwl\noZXjPR+n+sfZs6+LZ146SSrtsWlNA5/6sHHJyjpGRobzvj7raOQPb38X//flk3zn6SN8+8eHefyn\nx7luWzvv3t7OJSvrLpizuPn+/+beBzRXOf6PnI9Fk4WZRYD7gQ8B3cBzZrbbOXdwVpmbgE3Ouc1m\ndg3wAHBtQN0vAnucc18xs9/3p79YgO0riIGRSf72iZ/z6tEB1rXX8dlfe0dJ28k9z2N8bCznA0Is\nlmJ4eDSnf+TR0RFYwsVNS7njeynLnkiM8/QLAzQ25TaEysCZHupq6mlqmX98rplkmvGJGcYmZjjd\ne4bh8RkmU1EGx6bpHZri5SNvfHcJhaCuKkp9dZT66hiV0RS/fM16NnS0EgmX9kxkeHyalw6dYd/P\ne3n16AAALQ2V/Nr7N3HVZa0FP1iFwyHe9+/W8K63tfHk3hM88/Ipvv98F99/vov66hhb1jVx6co6\nOtpqaW6opKEmTmU8UrKDqOd5TM2kGE3M+D/Tmd8T02enp6ZTzCTTzKTSmd/JNJ6XZnR8kmg0E3sk\nHKKmKko4BBXRMBWxMJXxMFUVEaorIsxMTVxw9wUFnVlcDRxyzh0DMLNHgZ3AwVllbgYeAXDO7TWz\nRjNrB9YvUvdm4L1+/UeAH1PmycLzPE6eGefHL57k6Re7SaY83r6xmd/auY3KeGlb8yYSY7x2tJfh\n5FsvgZzPZGKIyclUTgfegTM9VNfUU12bW5/FUg7qS112ZVX1EvpOxhZ9PxYN01hXQWNdBZWMEg5X\n09TShud5TEylGBqb8n+mGRqdYnhsmpHEJPj3fbxw5DWikRANNXFWNFRRHY9QVx2jtipGLBo52y8T\ni4aYmZ462ycTDkEonPkdDoX8+ZlO5Mw01NbUEA6Hz9YJhTL9PhPTKUbGpxkcneJU/zjHT4+evVcC\nYNOaBj5vQ7q4AAAJ3ElEQVT8rg6usJaiJ7Gayhi/+t6N7HzPel4+3M9+18erxwbYe6CHvQd63lQ2\nFg1TWxWltjJKPOZfeh0NZ/ZZNExDXSWpmeTZ6fraauL+lXGRcGafZX+n05BKpUmmPZLJNDPJFIMj\n4ySmkkxMpUhMJUlMphibTDI2McP4RJKZHC+4gEwfWDTqryftAbk9ZTIWDfHC0QO0rqhmRV0FTXUV\nNNVX0lRXwQr/93K7ECPoKLcG6Jw13QVck0OZNcDqRequdM5l/4N6gJVLiLnontx7gj37Os8+A6Kl\noZKd71nPddvay+IpeAAVlbkfSENMQyiVU/mgg+58cj2on8uyCy00q59k9qWlnpe5umt4bIregVEq\n4zHOjMwwMj7F8VMjzCTz0RuwNFUVkbP3xVxhrbQ1VuVt2Us5Q8zeV5M9W9jUHmdT+xo+/kur6Rue\n4uSZCU4OZIYTGZ1IMjw2Sf/INMPj06SLtNsi4RAVsUySiscyZwJecpKKaJiGhloqYhEq/PmxyBsJ\nKeQn8oEzPVRV17GiuY2055FMeURjEfqHEkxNp5icTjExlTx7IcdYYpqB0SlODUwsGFNtVexsElnh\nf3GprohSEYtQGY9QWREhHo1kvjCE/S8Xs75geB5MzaSYnEkxNZ1iOpniso4Vb+kbzJegZJFrCs7l\niBmab3nOOc/MyvourleP9jOTTHPN1pW8fWMz73pb24KdsvkSiUSYGD1DJBJ81pIYH2N6MkFifOH2\n09kmEwkmJ1M5lZ+cGCccjua+7CWUDyobZpqEP9xHKeN4Ix5YUQ2VhLh2axN1dZkri5qba+k+NczY\nROZgkUylmUl6JFNpRsbGeb1zmFi8As/LHFg9eOO1hz+deZ0YHyOZTBGvqDw7HzIHu0iYTHNHLER1\nRZhQepIPXNXixzHNyMj0grGPjo6QSIyT9nJ76NVgfy9PnuykoXFFcNmBM4TDkUXLRoHm6szPYGiE\nLe31NDY143ne2cukUymPZNqjIh5jdHyKVNpjaGiIqekZKiqr8e8FJT1r34X8M7TMwTRzll1TVcWK\nFQ1nz1bi0dC8n9eBMz2Ew1Eam3K7K31qcoLJiTe+4MTjFdTFU9TFIdMtGwEyB+rs8DSxihoGRiYZ\nGJ1iYGSSwdEpBkamGBidZGBkitODCU705u9L0/WXt/ObH92at+XNFnQk6gY6Zk13kDlDWKzMWr9M\nbJ753f7rHjNrd86dNrNVQG9QoKELqadIRKQA/gX4UoGWHfT1eB+w2czWmVkcuAXYPafMbuA2ADO7\nFhjym5gWq7sb+LT/+tPAd897S0REpGAWTRbOuSRwN/AUcAB4zDl30Mx2mdkuv8zjwBEzOwQ8CNy1\nWF1/0X8C3GBmDviAPy0iIiIiIiIiIiIiIiIiIrKgsrsc1cy+CnwUmAYOA3c454b9974EfIbMbZS/\n55z7nj//ncDfApXA4865z5Yg7sAxtIoYSwfwDaCNzGX8f+2cu2+xMbkW2rdFiDVC5sq5Lufcx8o0\nxkbgIWAbmf15B/CLMozzS8CngDTwih9nTanjNLOHgY8Avc657f68Jf+dC/05XyDOsjsezRfnrPc+\nB3wVaHHODeQzznIcYvN7wDbn3DsAh3/ZsJltJXP57VZgB/A1M8smuweA33TObSZzue6OYgY8axys\nHX58t5rZlmLGMMcM8J+dc9uAa4Hf8ePJjsllwA/86YX2bbH+Nz5L5mq57I2Z5Rjj/yTzYdoCvB34\nebnFaWbrgP8IXOkfQCLAJ8skzq/765htKXEV63M+X5zleDyaL87sl8QbgOOz5uUtzrJLFs65Pc65\n7CAAe8nczAeZcaW+5Zyb8cebOgRc49/UV+ec+5lf7hvArxQzZmaNoeWcmwGy42CVhHPutHPuRf/1\nGJnxuNYwaxwv/3d2P823b68udJxmtha4icy39uw/cLnF2AD8knPuYchcEu5/syyrOIERMl8Sqs0s\nClQDJ8shTufcM8DcMeOXEldRPufzxVmOx6MF9ifAnwNfmDMvb3GWXbKY4zPA4/7r1bz57vHZY1DN\nnt/tzy+mhcbHKjn/G+cVZP7RFxqTa6F9W2h/AXwe3vSYhXKLcT3QZ2ZfN7MXzOx/mVlNucXpNzn8\nGXCCTJIYcs7tKbc4Z1lqXOXwOS/b45GZ7STTlPvynLfyFmdJkoWZ7TGzV+b5+disMn8ATDvnvlmK\nGJeoLMe2MrNa4P8An3XOvWngI+ecP9LOggq6TWb2UTJtrvtZoO+s1DH6osCVwNecc1cC48wZIbkc\n4jSzjcB/AtaRORDUmtmnZpcphzjnk0NcJVfOxyMzqwa+DPzXWbPz3h9dkrG1nXM3LPa+md1Opnni\ng7NmLzQGVTdvnBpm53dTXLmMoVVUZhYjkyj+zjmXHU5loTG55tu3hd6H7wZu9p+HUgnUm9nflVmM\nkPk7djnnnvOn/5FMu/XpMovzKuBZ51w/gJl9B7iuDOPMWsrfuaSf82VwPNpI5kvCS2aWXefz/vOF\n8hZn2TVD+Z0snwd2OudmP8x6N/BJM4ub2XpgM/Az59xpYMTMrvE7bn6D4o81lcsYWkXj74e/AQ44\n5+6d9dZCY3LNu28LGaNz7svOuQ7n3HoyHbE/dM79RjnF6Md5Gug0/1NI5mFerwH/XE5xkul0v9bM\nqvy//4fIXDhQbnFmLenvXKrP+XI4HjnnXnHOrXTOrfc/T11kLnToyWecZZcsgL8EaoE9ZrbfzL4G\n4Jw7APwDmQ/AE8Bd/ukrZMajeojM5YyHnHNPFjPggHGwSuF6MpdQvt/fh/v9f/p5x+QK2LfFkl1f\nOcb4u8Dfm9lLZK6G+qNyi9M59xKZTsp9QLbd+q/LIU4z+xbwLHCZmXWa2R3nGFdBP+fzxPkZyvB4\nNCtOm7U/Zzv7dyzn46aIiIiIiIiIiIiIiIiIiIiIiIiIiIiILB9m9t/8Afkws/9uZp8odUwiIlJm\nzCztDxgoIpThw49ESs3M/gr4bTIPEEqTeTjP951zf2Vm/w14G1AHGLAf+AqZB850AN9xzn3BX84q\n4D7gEqCKzFDRf1zUjRHJk3Ic7kOkpJxzv+O/vM45dwUwxJtHRb2SzHhWl5FJGH8EfJjMUCCf9keA\nhczwG/c5564hM9DfTWb2oSJsgkjelWTUWZFl7snskO9m9jLwov/Qqxkzex3YaGangfcBLW+MQUgt\nmbOS7xc/ZJHzo2QhsjQeMDVrOjXPdJTMWXsauMo5lypeeCKFoWYokfmNAo3+6xBv9O/l1M/nn3k8\ng//MZsg8I9nMVi5cS6R86cxCZH5/BvzQzCaAo7zRZzHfU90WGtr714G/8JuqIPOc7M+QeYyoiIiI\niIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiFyI/j9ge0Yqxc9LxwAAAABJRU5ErkJggg==\n",
"text": [
""
]
}
],
"prompt_number": 8
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Only Look at the Lower Times Posted"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"sns.distplot(df.loc[df.time < 100, 'time'])"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 9,
"text": [
""
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAESCAYAAAAbq2nJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0W9ed4PkvAAIEiYUrKO6LKF2J2izLtuRd3iPbcSmp\nVJXjk55KdVJpd6WcydTUpKp7eibTXX26M+lKT6drXJ12xUlVOpuTqbIdV8W2LDleY1mLJVuWROmS\nkigRoriJGwguAIE3f4B0KJokQBLgw/L7nOMjArjv8ncN8P1w73v3XhBCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQWcYSr4BSag/wbcAGPK21/uac1/cCfwFEp//7mtb6V9OvdQAjQAQIa613JjV6IYQQ\nK5K32ItKKRvwJHAfcBk4opR6QWvdOqvYAa31L6bLbwWeA9ZNv2YAd2mtB5IeuRBCiBWzxnl9J9Cu\nte7QWoeBZ4C9swtorYOzHrqB/jl1xO1tCCGEMMeiPQGgBuic9dgP7JpbSCn1KeAbQBXwwKyXDOCA\nUioCPKW1/u7KwhVCCJFM8XoCRiKVaK2f11q3AI8AP5z10m1a6+uBB4E/VkrdsbwwhRBCpEK8nsBl\noG7W4zpivYF5aa3fUkrlKaXKtNZXtdZXpp/vU0o9R2x46a2Fjo9Go4bFIqNHQgixFJYVnDjjJYGj\nwHqlVCPQBTwKPDa7gFKqGTivtTaUUjsAtNZXlVKFgE1rHVBKuYgNE/27xX6ZxWKhry+wvJZkAJ/P\nI+3LYNncvmxuG2R/+1Zi0SSgtZ5SSj0B7CN2i+j3tNatSqnHp19/CvgM8PtKqTAwCnx2+vBK4Fml\n1Mzv+bHW+pXUNEMIIcRypNXYi2EYRjZn62z/NiLty1zZ3DbI/vZVVHiXfS6Pd2FYCCFEFpMkIIQQ\nOUySgBBC5DBJAkIIkcMkCQghRA6TJCCEEDlMkoAQQuQwSQJCCJHDJAkIIUQOkyQghBA5TJKAEELk\nMEkCQgiRwyQJCCFEDpMkIIQQOUySgBBC5DBJAkIIkcPibS8pxKozDINAYCTp9Xo8XmQPayGuJUlA\npJ1AYIT9h9opKHQlrc7xsSD371qH11uUtDqFyAaSBERaKih0UejymB2GEFlPrgkIIUQOkyQghBA5\nTJKAEELkMEkCQgiRw+JeGFZK7QG+DdiAp7XW35zz+l7gL4Do9H9f01r/KpFjhRBCmGvRnoBSygY8\nCewBNgGPKaVa5hQ7oLW+Tmt9PfAHwN8s4VghhBAmijcctBNo11p3aK3DwDPA3tkFtNbBWQ/dQH+i\nxwohhDBXvOGgGqBz1mM/sGtuIaXUp4BvAFXAA0s5VgghhHniJQEjkUq01s8Dzyul7gB+qJTauNyA\nfL7sniAk7YvP4Yjidg3gcjuTEFGMlRDl5R6KilYWXza/f9ncNsj+9i1XvCRwGaib9biO2Df6eWmt\n31JK5QGl0+USPnZGX18gXpGM5fN5pH0JGBkJMBqcJMpEEqKKGQtO0t8fIBRa/g1x2fz+ZXPbIPvb\ntxLxksBRYL1SqhHoAh4FHptdQCnVDJzXWhtKqR0AWuurSqnheMcKIYQw16Jfi7TWU8ATwD7gNPAz\nrXWrUupxpdTj08U+A3yolDoO/Ffgs4sdm5pmCCGEWI60WlfXMAwjm7ts2d4lTd5w0DBvf3glqQvI\njQUD3L61akWriGbz+5fNbYPsb19FhXfZ53KZMSyEEDlMkoAQQuQwSQJCCJHDJAkIIUQOkyQghBA5\nTJKAEELkMEkCQgiRwyQJCCFEDou7qYwQ6SISNTjnH+Zyf5DxySnCkSgVxQU0VHqoLC3Eak2ruY9C\nZARJAiIjnLs8zPtt/QQnpgCwWMBmtdA2GqLNP0yx28Gd26spduebHKkQmUWSgEhrhmFwTPdz6sIA\nVquFloYSNjWWUOjMwwD6Bsdp8w9zvmuEX75zkV2b1rCudvlLQwiRayQJiLQVjRocPNnNua4RvIV2\n7r2xFk+h46PXLcCa0kLWlBZSV+Hm4Mlu3jnZTSRqsKG+2LzAhcggcmFYpK1juo9zXSOUFTnZc3P9\nNQlgroZKDw/d0oDTYePw6R4u9WTvYmFCJJMkAZGWOvvGOd0xSJHLwf031eJ0xO+0el0O7rmhFpvN\nwpsfXKFvaHwVIhUis0kSEGmne2Cco3qIPJuF3ddX48izJXxseZGT3dtriEYN3j5xhfBUNIWRCpH5\nJAmItBKJRvnRqx1Eoga3bqlc1t0+NT4Xm5tKCYyFOXqmNwVRCpE9JAmItPKr9y7j7xujvqKAxirv\nsuvZvr6MEk8+bf5h/L2jSYxQiOwiSUCkjcHAJM++dZ7CfBvbmpafAABsViu3b6vEarHw7ukepiIy\nLCTEfCQJiLTx0wOayVCER26pxelI/DrAQko8TjY1lTA2MYX2B5MQoRDZR5KASAtt/iGOnu2jucbL\nrpaypNW7dW0ZBfk2zvpHGQyEklavENlCkoAwnWEY/MPr5wB49O71WC3JWwPInmdlh/IRiRq8cNCf\ntHqFyBaSBITpTl4YQPuHua65LCVLPqyt9lLitnO8fZALV0aSXr8QmUySgDBV1DD4hzdivYDf3t2c\nkt9hsVjYOn2h+fm3LqTkdwiRqeJOw1RK7QG+DdiAp7XW35zz+ueAPyO2lEsA+COt9Ynp1zqAESAC\nhLXWO5Mavch4x3Ufl3pG2bVpDXUV7pT9norifNZVu/nw/FXaLw+zrkYWmRMC4vQElFI24ElgD7AJ\neEwp1TKn2HngTq31NuDfA38z6zUDuEtrfb0kADGXYRj88uBFLMBv3daY8t/34M5qAH7x1vmU/y4h\nMkW8nsBOoF1r3QGglHoG2Au0zhTQWh+cVf4QUDunDtnpQ8yr9eIgHd0Bbtjgo6rMlfLf11ztYXNj\nCac6BtGdQ6g6WWlUiHjXBGqAzlmP/dPPLeSLwIuzHhvAAaXUUaXUl5YXoshWL757EYCHbm5Ytd+5\n9/a11/xuIXJdvJ6AkWhFSqm7gS8At816+jat9RWllA/Yr5Q6o7V+a7F6fD5Por8yI0n7Yto6Bznd\nMcj29T52brv2e4XDEcXtGsDldiYtLishyss9NDcXsenXFzhx7ipjEYOGyqXNTM7m9y+b2wbZ377l\nipcELgN1sx7XEesNXEMptQ34LrBHaz0487zW+sr0v31KqeeIDS8tmgT6+rJ3HXifzyPtm/bTl88A\ncN8NNR87ZmQkwGhwkigTSYttLDhJf3+AUMjKvTtqOH1hgJ++3MoXH96UcB3Z/P5lc9sg+9u3EvGG\ng44C65VSjUopB/Ao8MLsAkqpeuBZ4J9prdtnPV+olPJM/+wCHgA+TGbwIjMNjU5yTPdR63PR0lCy\n6r//unXlVJUV8u6pHgYDk6v++4VIJ4v2BLTWU0qpJ4B9xG4R/Z7WulUp9fj0608BXwdKgO8opeA3\nt4JWAs9OP5cH/Fhr/UrKWiJMYxgGgcAIDkeUkZH437YOHL1CJGpwc0sZgcDHJ28FAiNLGIhcOqvF\nwid21vN3L53hwNFOfvfudan7ZUKkubS6c8cwDCObu2zZ2iUdGRlm/6F2fL5SRoOLf7M2DIMXj/QS\nnory8M412PM+3hkd6O+h0OWltLwiaTGOBQPcvrUKrzc2PyA8FeFr3zlIeCrCt758GwX58Xcuy9b3\nD7K7bZD97auo8C77XC4bzYukKCh04XJ7447jd/aOMj4ZQdUVUVQ0/4StsWDq1/+359m474Zann3z\nPG+838WeXfUp/51CpCNZNkKsqrOXhgDYUG/+Pfp376gh325j/9FO2W9A5CxJAmLVBMZCdPUH8RU7\nKfEk7/bP5XI57dx5XTWDgUkOne4xOxwhTCFJQKwa3TkMpEcvYMb9N9VitVh4+fAlDCOFV6OFSFOS\nBMSqiESjtPuHybfbaFiTPpN2yosK2NlSweW+IKc6BswOR4hVJ0lArIqL3aNMhiOsq/Vis6XXx+6B\nnbH5kK8c7oxTUojsk15/jSJrzVwQTsdF2xorvai6Yk5eGMDfl/o7k4RIJ3KLqEi5wcAkfUPjVJcX\n4il0mBLDzIS2hdyxpQzdOcSL75zjs3c3zltm7mQ4j8eLJYlbYQphBkkCIuXSoRcwPhbkjWMDFJfO\nv4m9YRi4nTYOn7lKuTcPp8P2sTJu18BHk+HGx4Lcv2vdR5PPhMhUkgRESoWnopzvGqbQmUetL3U7\nhyXCWVBIoWvhi9KbmiIcbu3lUv8U29d/PGG53M6kLmonRDqQawIipc53jTAVMVC1RVit6T100lxT\nhMNuRXcOEZHJYyJHSBIQKWMYBrpzCIsF1tWm3wXhuex5VlRtMROhCOevLHz9QIhsIklApEzf0ASD\ngUnqKtwUOjNj5HFjQzEWC5zuGJTJYyInSBIQKaM702edoEQVOu00VXkZHg3R1T9mdjhCpJwkAZES\nE6EpOq4E8BbaqSwtNDucJZnZ6Oa0zCAWOUCSgEiJ9ssjRA0DVV+ccffSlxU5WVNSwJWrY7LzmMh6\nkgRE0hmGQVvnEDarhebqzLyPflNTKQCtHYNxSgqR2SQJiKTr6h8jMBamscpD/jyTrjJBrc+Fp9DO\n+a4RxienzA5HiJSRJCCS7qMLwmm4TlCiLBYLLY0lRA3joxnPQmQjSQIiqYLjYfy9o5R68ykrMn/j\nmJVoro5NHjt7aUh2HhNZS5KASKo2/zAGsV5Apl0QnsueZ2VDXTGT4Qjt/mGzwxEiJSQJiKSJRA3a\n/EPY86w0VnnNDicpNjaUYLNaOHlhgEhUegMi+0gSEElzoWuY8ckIzdVe7HnZ8dEqyM9jfV0RYxNT\naLk2ILJQ3Ln8Sqk9wLcBG/C01vqbc17/HPBngAUIAH+ktT6RyLEiu5w8dxUAlUEzhBOxubEUfWmI\nY2d6qb6tAWuGD3MJMduiX9eUUjbgSWAPsAl4TCnVMqfYeeBOrfU24N8Df7OEY0WWCIxNcblvlDUl\nBRS7880OJ6lcBXbW1hQxNDrJxe5A/AOEyCDx+uw7gXatdYfWOgw8A+ydXUBrfVBrPXPV7BBQm+ix\nInucuxIEsq8XMGNLUykWC5xov0pUFpYTWSReEqgBZu++7Z9+biFfBF5c5rEiQ4XCUS72jlGQn0f9\nmoU3bclkXpeDDQ0lDAdDdFyR3oDIHvGuCST8lUcpdTfwBeC2pR47m8+XnSeRGdnYvoOnLxOeMti2\nrpRib8GK6xsPOrBa7XjcyZtnkIw6b2pZg744yIfnr7L21mrKyz0UFWXP+5mNn83Zsr19yxUvCVwG\n6mY9riP2jf4aSqltwHeBPVrrwaUcO1dfX/Z+y/L5PFnZvn3vxjp8m5rKCIyufPvFYDCE1RohvyB5\nWzkmo06v28m62iJ05zCnO4bYsS5AKJQdd0Fl62dzRra3byXiJYGjwHqlVCPQBTwKPDa7gFKqHngW\n+Gda6/alHCsyX0f3CJd6x6gqzcfrciQlCaSzrWvLaPePcPpigPCUzBsQmW/RrzFa6yngCWAfcBr4\nmda6VSn1uFLq8eliXwdKgO8opY4rpQ4vdmyK2iFM8tqxywCsrXKZHMnqcBXY2dhQzNhkhLc+7DU7\nHCFWLO48Aa31S8BLc557atbPfwj8YaLHiuwxOh7m0OkeyrwOKkuy67bQxWxdW0abf4j9x7q5b+da\n3AV2s0MSYtmyY0BTmOLtE1cITUW5bbMv49cJWop8h42WOg/jkxH+6Z0Os8MRYkUkCYhliRoGrx33\nY8+zsqul3OxwVl1ztYsyr4NX3/PTPSB7EYvMJUlALMvJ81fpG5pg16Y1uJxxRxWzjs1q4ZFbaolE\nDX5yQGPIBDKRoSQJiGV59b3YBeF7d9TGKZm9rltbzKbGEk6eH+B4W7/Z4QixLJIExJL1DI5x8vxV\nmmu8NFTm7gQci8XC5+5X2KwWfnqgjclwxOyQhFgySQJiyV47dhmD3O4FzKgqc/HATXVcHZnghV9f\nMDscIZZMkoBYkslwhLdPXMHrcnDjxgqzw0kLv3VbE+VFTvYd6uTClRGzwxFiSSQJiCU5dLqHsckp\n7ryumjybfHwgdsvoP39wI1HD4Psvtsp+xCKjyF+xSJhhGLz6nh+rxcJd26vNDiettDSWctf2ai73\nBWXugMgokgREwtr8w3T2jnK9KqfUm7wVPrPF7969jlJvPr88eJFLPbJYmcgMkgREwvYfja0Wet8N\nckF4PgX5eXx+z0YiURkWEplDkoBISN/QOMd0H/Vr3Ki67Nw9LBm2ri3jtq2VXOoZ5eVDl8wOR4i4\nJAmIhLz6nh/DgAduqsupdYKW47P3rqfI7eCFX1/A3ztqdjhCLEqSgIhrfHKKNz/oosjlYGfLGrPD\nSXsup53P79nIVMTg6X86LcNCIq1JEhBxvX3iChOhCPfsqJHbQhO0fV05t2+r4lLvKC/8usPscIRY\nkPxFi0VFowb7j3Ziz7Ny1/U1ZoeTUR67dz1lXicvHrzI+S6ZRCbSkyQBsajjbf30D09wy+ZKPIUO\ns8PJKAX5eXzh4RaiRmxYKCRrC4k0JElALGr/kdgdLvffVGdyJJmppaGE+26spXtgjL9/45zZ4Qjx\nMZIExII6ukfQ/mG2NJVSU54bewinwu/sbqaqrJADR/20Xhw0OxwhriFJQCxo/5HY5DDpBayMw27j\nDz+5CavFwt++2MpEaMrskIT4iCQBMa/BwCSHW3upKitkS1Op2eFkvKYqL3t21dM/PMFzb8qS0yJ9\n5N6+gALDMAgEFr9b5eV3LxOJGtyxpTxu2UBgBHJsd8VE/h/Odde2Uo60dnPgaCebG1w0rrl2iM3j\n8cpEPLHqJAnkoEBghP2H2ikonH+cfyoS5Y0TvTjyrITDYd7+8Mqi9Q3091Do8qYi1LQ1PhbkjWMD\nFJeWLem4TQ1u3jgxyfdfaue+631YrZaP6rt/1zq83qJUhCvEguImAaXUHuDbgA14Wmv9zTmvbwT+\nFrge+Dda6/8867UOYASIAGGt9c7khS5WoqDQRaFr/q0hdecQoakoW9eW4vHGP7mPBXNzaQRnQeGC\n/w8X0uDysH5gijb/MBf7p9gsQ23CZIteE1BK2YAngT3AJuAxpVTLnGJXga8A35qnCgO4S2t9vSSA\nzGAYBq0dg1gtsKG+xOxwstIO5SPfbuOD9n7GJuQisTBXvAvDO4F2rXWH1joMPAPsnV1Aa92ntT4K\nhBeoQwY5M0hX/xjDwRCNVV4KnTJamAr5DhvXq3KmIgZHz/aaHY7IcfGSQA3QOeuxf/q5RBnAAaXU\nUaXUl5YanFh9pzoGAGhplF5AKq2vLaKsyEnHlQDdA2NmhyNyWLyveiu95+M2rfUVpZQP2K+UOqO1\nfmuxA3y+pY2xZpp0aJ/DEcXtGsDlvnZ3sL7BMbqvjlFb4aaxOvE9A8aDDqxWOwAe98p3HJupLxl1\nJbvOmeOTUd/dN9Tx979q4/22fh7cuYbycg9FReZ9PtLhs5lK2d6+5YqXBC4Ds2cK1RHrDSREa31l\n+t8+pdRzxIaXFk0CfX3Zuy2fz+dJi/aNjAQYDU4SZeKa54+c7gZgQ10xgdGJ+Q6dVzAYwmqNUO5j\nScfFqy+/YOV1JbNOj9v5UfuSUV+hw0pjpYeO7gBnOoa5vjlAKGTO1J10+WymSra3byXifeKOAuuV\nUo1KKQfwKPDCAmWvGftXShUqpTzTP7uAB4APVxivSJHR8TAd3QGK3Q6qywvNDidnXK/KsVrg5MUR\n2XdAmGLRnoDWekop9QSwj9gtot/TWrcqpR6ffv0ppVQlcATwAlGl1FeJ3UlUATyrlJr5PT/WWr+S\nuqaIlThzcRDDgM1NpTJhaRV5Ch1sqC+h9eIgvz7ZxyN3yLUYsbri3v6htX4JeGnOc0/N+rmba4eM\nZowC21caoEi9UDiC7hyiID+PxqrcmvSVDrY2l9LmH2L/sW4e2NVMvsNmdkgih8jaQQLdOcRUxKCl\noRibVXoBq83pyGN9tYvR8SleO37Z7HBEjpEkkOMiUYPWi0Pk2SyousTvCBLJtb7GjdNh5eVDF5mU\nzWfEKpIkkOM6rowwPjnF+tpiHHYZhjCLw27lzq0VjIyFeV16A2IVSRLIYYZhcOrCABaLTA5LB7uv\nW4PTYeOld6U3IFaPJIEc1tU/xtBoiMZKD+4Cu9nh5DyXM497b6hlZCzMO3FWbhUiWSQJ5LCZJSI2\nyUqWaeO+G2rJs1nYd7iTaDTHNmkQppAkkKMGR8N0Xx2jsqyQMm/ylmcQK1PkzufWLVX0Do1zTPeZ\nHY7IAZIEclSbP7YHwOZG6QWkm0/srMMCvHToIoYhvQGRWpIEctBgIERn37gsEZGmqspcbF9fzoUr\nAXTnkNnhiCwnSSAHvXGiBwNZIiKd7dlVD8CBowmv1yjEskgSyDFjE2EOnu7H6bDKEhFpbF1NEXUV\nbo639TMwkrzVVIWYS5JAjnnj/S4mw1HWVbtkiYg0ZrFYuPeGWqKGwevvd5kdjshikgRyyFQkyv6j\nneTbraytcpkdjohj16Y1FObn8eYHXbLMtEgZSQI55NDpHoZGQ9y8qRxHnrz16S7fbuP2bVWMBEOy\nF7FIGTkT5AjDMNh3+BJWi4Xd2yrMDkck6O7rY1t6/+qYrCckUkOSQI44dWEAf1+QnS0VlHryzQ5H\nJGhNaSFbmkpp9w9zqUe2RxTJJ0kgR7x8+BIAn9hZb3IkYqnu2VELSG9ApIYkgRxwsTvA6Y5BWhpK\naKj0mB2OWKJtzWWUeZ28e7qbsYmw2eGILCNJIAfsOxLrBcxMQBKZxWq1cPeOGkLhKG9/2G12OCLL\nSBLIcgMjExw+3UuNz8UWWS00Y92xrYo8m5XXjvmJynpCIokkCWS5V450EjUMPnFTvSwRkcE8hQ52\ntVTQMzjOmYuDZocjsogkgSw2NhHmjQ+6KHY7uHnzGrPDESu0e/p2UZlBLJJJkkAWe+ODLiZDEe67\nsY48m7zVma652kutz8Vx3cdwMGR2OCJLxD0zKKX2KKXOKKXalFJ/Ps/rG5VSB5VSE0qpP13KsSJ1\npiJRDhz1k++wcdf2arPDEUlgsVjYvb2GSNTg7RPSGxDJsWgSUErZgCeBPcAm4DGlVMucYleBrwDf\nWsaxIkUOne5hMDDJ7uuqKXTK/sHZ4pbNlTjsVt78oEsuEIukyIvz+k6gXWvdAaCUegbYC7TOFNBa\n9wF9SqmHl3qsSI3ZS0Tcd2Ot2eGIBBiGQSAwklDZ65tLOHTmKkdP+dlYv/hy4B6PV24IEIuKlwRq\ngM5Zj/3ArgTrXsmxYlo0GuWdIyew2RNf6qGzfxJ/X5DmSidt5zpom/O61ZgEZF/hdDI+FuSNYwMU\nl5bFLetyxk7q/3iwk/7hhW/7HR8Lcv+udXi9RUmLU2SfeElgJf3NZR3r82X3jNalti8SiTCV56TA\n60v4mJPvnwPghs11OLwf3z4yGuzC7crH5U5OIhgPOrBaY0NOniTUOVNfMupKdp0zxyc7xvGgA4/H\nRbkv/vtcUWFwomOUroEJ3N5iXAXzD/cFR/MpL/dQVJTYZ07+9nJTvCRwGaib9biO2Df6RCzr2L6+\n7F0ky+fzLLl9kUiEYGACbIntLnV1ZAJ/7yiVpYU47VYCox8/LjI6waTFTpTk7FgVDIawWiOU+5j3\n9y23vvyC5O2olYw6PW7nR+1LdoxLra+5uoj+oQne171sa56/9zAWnKS/P0AoFP/OsOV8NjNJtrdv\nJeJ9Oo4C65VSjUopB/Ao8MICZecOPC7lWJEkpy8MALH9g0X2aqr2kGez0NY5JBeIxYos2hPQWk8p\npZ4A9gE24Hta61al1OPTrz+llKoEjgBeIKqU+iqwSWs9Ot+xqWxMrhsdC9PRHaDY7aC6/OPDQCJ7\nOPJsNFV5afMPc6U/SI3PbXZIIkPFGw5Ca/0S8NKc556a9XM31w77LHqsSJ1THQMYBmxZWyp3hOQA\nVVdMm38Y3TksSUAsm0wjzRIToSna/cO4nHk0Vi5+26DIDmVFTsq8+fh7RwnKEtNimSQJZIkzF4eI\nRA02NZZitUovIFesryvGANr9w2aHIjKUJIEsEJ6KcubSIPl2G+tq5Z7wXNJU5cVus9LmHyYalQvE\nYukkCWSBdv8woXCUDfXF2PPkLc0l9jwrTdUexiamuNwfNDsckYHkjJHholGD0x0D2KwWNjYUmx2O\nMIGqi73vunPI5EhEJpIkkOEuXBkhODHF+toinI64N3uJLFTqdVJe5KSrL8jouFwgFksjSSCDGYbB\nqQsDWCywqVEmh+UyuUAslkuSQAa73BdkaDREU5UXd6EsF53LGis92PPkArFYOkkCGeykLBEhptnz\nrKyt9jI+OYW/b9TscEQGkSSQoXoHx+kdHKfG56LEk/gy0yJ7/eYCsQwJicRJEshQM72ALdILENNK\nPPn4ip109QcZHZMLxCIxkgQy0NDoJP7eUcqLnFSUFJgdjkgjM72Bs3K7qEiQJIEMdOr8dC9AFooT\nczRWenA6bLT5h5iKRM0OR2QASQIZJjAW4vyVEYrcDuoqZOVIcS2bzYqqKyYUjnKxZ9zscEQGkCSQ\nYU6ejy0XvXVtmfQCxLw21BdjtVho6xqVDWdEXJIEMkhwPMy5y8N4Cu00Vsl+qWJ+Bfl5NFV7GB2P\n0HpxxOxwRJqTJJBBTl4YIDrdC7BKL0AsoqWhBIDXP+gxORKR7iQJZIixiSna/MO4C+ysrZZNY8Ti\nSr1OKoodtF0OcL5LegNiYZIEMsSpCwNEowZb1sqmMSIxG+tiQ4YvvnvR5EhEOpMkkAEmwlF05xCF\nzjyaa6QXIBLjK3JQX1HIMd1Hl+w1IBYgSSADtF2ZIBI12NJUis0qb5lIjMVi4b4dVQC8JL0BsQA5\no6S54HiY890TFOTL1pFi6bY0FVFd7uLd0z30Dcm8AfFxkgTS3L4jnUxFYXNjKXk2ebvE0lgtFh65\ntZFI1OCFX18wOxyRhuJuRaWU2gN8G7ABT2utvzlPmb8CHgTGgD/QWh+ffr4DGAEiQFhrvTN5oWe/\nodFJXn3vMk67BVUvW0eK5bmppYJ/OtjBOye7eejmBqrKXGaHJNLIol8tlVI24ElgD7AJeEwp1TKn\nzEPAOq2dZwPeAAARsElEQVT1euBfAN+Z9bIB3KW1vl4SwNL94687CE1FaaktkF6AWDarxcKnbl+L\nYcAv3pbegLhWvDPLTqBda92htQ4DzwB755T5LeAHAFrrQ0CxUmrNrNflfsZl6B0c480PuqgoKaDR\nJ/sFiJXZocppWOPhcGsvnb2y6Yz4jXhJoAbonPXYP/1comUM4IBS6qhS6ksrCTTXPP/WBSJRg0/d\n3ijzAsSKWSwWfnv3WgB+/lo7hqwpJKbFuyaQ6CdlobPU7VrrLqWUD9ivlDqjtX5rsYp8vuxeEyeR\n9l3oGuZQaw9ra4rYc9tann91GI/bmbQYohYn40Y+riTVOR50YLXG9jhORpwz9SWzzcmqc+b4ZMeY\nijZbCVFe7qGoKPaZu7vczWvvd/G+7uPS1XFubFlzTXn528tN8ZLAZaBu1uM6Yt/0FytTO/0cWuuu\n6X/7lFLPERteWjQJ9PUF4kedoXw+T0Lte/r5DzEM2HtbI1evjhIMTIBtImlxREYnmLTYiZKcOoPB\nEFZrhHIfBEZXXudMffkFyWtzMur0uJ0ftS/ZMaaizWPBSfr7A4RCv+nw//YdTXzQ1sdTz56g5os7\nP7rWlOhnM1Nle/tWIt5w0FFgvVKqUSnlAB4FXphT5gXg9wGUUjcDQ1rrHqVUoVLKM/28C3gA+DCp\n0WehNv8QJ85dRdUVy9aRIulqfW52b6+he2CM145fNjsckQYWTQJa6yngCWAfcBr4mda6VSn1uFLq\n8ekyLwLnlVLtwFPAl6cPrwTeUkq9DxwC/klr/UqK2pEVDMPgH14/B8Dv7G6W/QJESnzqjiYK8vN4\n/q3zDAYmzQ5HmCzuPAGt9UvAS3Oee2rO4yfmOe48sH2lAeaS9872of3DbF9XLrODRcp4Cx38zl3N\n/HDfWX56QPPlT281OyRhIrn5PE2EwhF+/lo7NquFR+9ZZ3Y4Isvt3l7Nupoijp7t43hbn9nhCBNJ\nEkgT+w5fon94gvtvqmNNaaHZ4YgsZ7VY+PyeDdisFn70iiY4HjY7JGESSQJpYGBkgl++exFvoZ1H\nbm00OxyRI2p8bj55ayODgUn++7MnzA5HmESSQBr4yYE2QuEon9ndTEF+3Ms0QiTNw7c0sLbay+vH\n/Lx7qtvscIQJJAmY7Lju45juY31tEbdtqzI7HJFj8mxWvvTIJpwOGz985Sz9stx0zpEkYKLxySl+\ntF9js1r4/T0bZfN4YYo1JYU8/umtjE9G+OvnThIKR8wOSawiSQImevbN2H3aD97cQE25LO8rzHPv\nTfXcsa2Kiz0BfvDyGVlbKIfIALRJTnUM8Op7fipLC3nk1gazwxFZyDAMAoGRhMo6HFH23lLJpZ4R\nDp7qoaLIzt3b13ysnMfjTeokxqXEmKhkx5jtJAmYYGwizPd/2YrVYuFLj2zCnmczOySRhcbHgrxx\nbIDi0rK4Zd2uAUaDk2xpcNMzMM4v3vHTPRCkzldwTX3371qH15u8iYyBwAj7D7VTUJicnnAqYsx2\nkgRM8OP9msHAJHtvb6Kpymt2OCKLOQsKKXTFXz3T5XYSZYJCF9x3k5N9hzs5cnYQj9tFdYqHKgsK\nXQnFKFJDrgmssjc/6OLgqR6aqjw8fIsMA4n0U+p1cveOGrBYeP34ZbqvjpkdkkghSQKrqN0/xI9e\n0bicefzLvVtky0iRtipLC9m9vZpoFF59z8/lvqDZIYkUkbPQKhkdD/ONHxxhKhLlS49swldcEP8g\nIUxUV+GO9QiA1475udQrPYJsJElgFYSnIvy//3CC3oExHrm1kW3N5WaHJERCanwu7r2hFpvNyuGz\nQ/zjwctEo3L7aDaRJJBiUcPgu/94mjb/MLdfV83eO5rMDkmIJaksK+Shm+txF9h49Xg3/+X/+0D2\nIcgikgRSKGoY/Hi/5ujZPlRdMX/y2A6ZFSwyUpE7n3uu89FS7+XUhQG+/r1DHG7tkUllWUBuEU2R\nqGHwP14+y5sfdFHjc/GVz2zFYZf5ACJzOexW/sXD63jv3Cg//1U7//0Xp3j9+GUevWc9DZWpvcXT\nMAyCE1OMjocZmwgzGYoSnooQNcBqAZvNSkG+DUs0zGAghMdjyISxBEkSSIGpSJS/e+kM75zspn6N\nmz99dDsup93ssIRYMYvFwj07atncWMozr7bxwbmr/MXfHWH7+nLuv7GODfXFKz75Rg2DkWCIgZEJ\nrg5PMjAywcDIJOFINKHj3zp5FafDRv0aD+tri9hQV8xtxbJHx0IkCSTZSDDEf3vuQ7R/mKYqL//r\no9dJAhBZZ01pIV/93es41THAs2+c53hbP8fb+llTUsAO5WNbcxmNlV7yHYv3fidCEa6OhPAPDDEY\nmGRgZJLBwARTkWuHmYpcDko8+XgK7bicdvIdNux5VqwWC1HDYCoSZSIUYTgQJN9up3c4RFvnELpz\niF8evMh3fnGSTY2lXL++nG3N5bgL5G9yhiSBJGr3D/PUC6e4OjLBjRsr+OJDLXH/CITIZJsbS9nU\nUMK5rhEOHO3k/fZ+Xjp0iZcOXcJC7KJyiScfb6GDPJuVqGEwGY4wHAwxODLJ1ZGJa+qzAEVuB6Ve\nJ2VeJ2VF+ZR4nNjzErt8ORa0cfvWKrzeIsYmpjjfNcypjgFOnB/gvbN9vHe2D6vFwob6Yna2VHDD\nhoqcTwiSBJIgPBXhubcusO/wJTDgU3c08citjTImKXKCxWJhXU0R62qKCIUjnO4YpPXiIBd7Avh7\nR7kyz4xjiwW8LgfrazwYRhRfqYcSTz7FbkfSJlEWOvPYsraMLWvL+OPfc3PiTA/vt/dzXPfRejEW\n449e0WxuKuWmjRXsUL6c3NQp91qcRFHD4HBrD8++cZ7+4Qkqigv4wsMtqLpis0MTwhQOu43t68vZ\nvv43c2HCUxECY2GmIlGsVgv2PBueAjtWq4WRkWHe/vBKytcOslgsVJfH1kF66OYG+ofHOXKml8Ot\nvZw4d5UT567yg5fPsq25jJ0tFVy3rpz8HLmRI24SUErtAb4N2ICntdbfnKfMXwEPAmPAH2itjyd6\nbCYKT0U53NrDK0c66ewdJc9m4YGb6vj0HWtl+EeIOex5Nkq96fV3UV5UwIO7GnhwVwM9A2Mcbu3h\nUGsvx6Z3+su329jWXMbWtWVsbiqlxJNvdsgps2gSUErZgCeB+4DLwBGl1Ata69ZZZR4C1mmt1yul\ndgHfAW5O5NhMEo0atPmHOHKmlyNnegmMhbFY4OZNa/j0nWtlGQghMtSa0kIeua2JR25rwt83yuHW\nHg6f7v3obx2g1udiS1MZG+qLaazyUuRymBx18sTrCewE2rXWHQBKqWeAvcDsE/lvAT8A0FofUkoV\nK6UqgaYEjk1LhmEQGAvT2TfKpZ4AbZ3DnO0cYnxyCgB3gZ09u+q5Z0cN5UVy8hciW9T63NT63Hz6\njrV09Qc5eWGAkxcGOHtpCH/fJV4+fAmAUm8+jZVeGio9VJUW4isuwFdcQKEz80bY40VcA3TOeuwH\ndiVQpgaoTuDYVTMYmKT7apBwJEp4KkpoKkooHCE4MUVgLMToWJjAeJih0Un6hsYZn7x2n9WK4gJ2\ntlRw44YKNtQXywqgQmQxi8VCjc9Njc/NJ3bWEwpH0J1DnOsaoePKCBe6Ax8NHc3mLrBT5nXiKbTj\nLrTjLrDjKbDjzM/DnmfFbrPG/p35z2bFZrWCBUo9+ZR6nave1nhJINE54Wl9G4xhGPzFD44wPBqK\nW9aRZ41l9boCaitc1Fd4aKryUla0+m/OjNBEAMtw8qbn240Q4+HkLQ08MR7Eas0jODrCWHDla8rM\n1DcWDCQhuuTVaSX0UfuSHaPZbZ7dtoWMjwWTvhVkIDDC+FjyPovJrGs2h9320Z1GEDunDAYmudgT\noG9wnN6hcfqGJugdGufK1SAXexKb2DabPc/Kk//LnQnfDpss8ZLAZaBu1uM6Yt/oFytTO13GnsCx\n17DIPZVCiBz23H9a/d8ZL+UcBdYrpRqVUg7gUeCFOWVeAH4fQCl1MzCkte5J8FghhBAmWjQJaK2n\ngCeAfcBp4Gda61al1ONKqceny7wInFdKtQNPAV9e7NiUtUQIIYQQQgghhBBCCCGEEEIIIcS8TL0l\nUyn1VeAPp+P4rtb6vyqlSoGfAQ1AB/B7Wush86JcngXa9pfAJ4EQcA7451rrYRPDXLb52jfrtT8F\n/hIo11oPmBTiiizUPqXUV4jd/BABfqm1/nPzoly+BT6fO4kt9WIHpoAva62PmBhmwpRS3wceBnq1\n1lunn1vwXKKU+tfAF4i9j/+z1voVM+JO1FLap5S6H/gG4CB2rvma1vq1heo2bdqrUmoLsQ/hTcB1\nwCeVUs3AvwL2a60V8Or044yySNteATZrra8DNPCvzYty+RZpH0qpOuB+4KJ5Ea7MQu1TSt1NbJmU\nbVrrLcC3TAxz2RZ5//4T8H9qra8Hvj79OFP8LbBnznPznkuUUpuI3bK+afqY/6aUSvclABJuH9AH\nfFJrvQ34PPDDxSo2s+EbgUNa6wmtdQR4A/gMs9Yimv73UybFtxLzte23tdb7tdYzUwkPEZtYl4nm\nbd/0a/8P8GemRZYcC7XvXwLf0FqHAbSes2ZA5liofV1A0XSZYmITQTOC1votYHDO0wudS/YCP9Va\nh6fXNmsntk5a2lpK+7TW72utu6efPw0UKKUW3DnHzNWOTgL/YbpLMwE8RGyC2ZrpyWYAPcAak+Jb\nibltexg4PKfMF4CfrnZgSTLve6eU2gv4tdYnlFKmBrhCC302FXCnUuo/Tj//v2mtj5oX5rIt9Pn8\nV8A7SqlvEfuCeIt5ISbFQueSauDdWeVm1jvLNImcKz8DvDfzxWU+pvUEtNZngG8SGyJ5CXif2Pjc\n7DIGia9flDbmadtx4KPFRJRS/wYIaa1/Yk6EK7PAe5dPbHjr/5pVNCOXAVnks5kHlGitbwa+Bvzc\ntCBXYJHP5/eAr2it64E/Ab5vWpBJlsC5JOPOM7PN1z6l1Gbg/wYeX+xYU8fBtNbf11rfqLXeTayr\no4Ge6aWoUUpVAb1mxrhcc9o2BJwFUEr9AbFvlp8zMbwVm+e9O0Vs+fAPlFIXiA11vaeUqjAzzuVa\n4LPpB56dfv0IEFVKlZkY5rIt0L5dWuvnpov8PWk+RJKAhc4l8613ljFDX7MseK5UStUS+6z+T1rr\nC4tVYmoSmDlBKKXqiY1J/oTY+kKfny7yeeB5c6JbmTlt+zTwk+md1r4G7NVaTyx2fLqb5737O631\nGq11k9a6idgJc4fWOiOT+Dzt+zGxz+I9088rwKG1vmpakCuwwN9eu1Jq93SRe4glhky20LnkBeCz\nSimHUqoJWM/Hh2szwbztU0oVA78E/lxrfTBeJWbfIvomUAaEgT/RWr82PU75c6CezL5FdL62tRG7\nbWvmtsmDWusvmxXjSszXvjmvnwduzOBbROd7/+zEhki2E7v17k+11q+bF+XyLdC+G4G/Jja0N07s\nFtHjJoaZMKXUT4HdQDmx8fGvA79ggXOJUup/J3Zdbgr4qtZ6nwlhJ2wp7VNK/R/Eru+0zarifq11\n/6oGLYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEKtMKfVvlVJ50z//O6XU75kdkxBCiFWilIoq\npVxmxyGEmTJygS8hVkop9dfAHwEfEls8rQM4oLX+a6XUvyW23LKH2Mqhx4mtrf+XxNaceVZr/WfT\n9VQBf0Vs1mYBsSWKv7GqjRFiBdJ9IwUhUkJr/cfTP94yvYnKENeuwrgD+CywgVgi+A/AA8A24PMz\nm+gA/wP4K631LuBG4CGl1H2r0AQhksLM/QSESGcva60DAEqpE8D702uyh5VSZ4FmpVQ3cBdQPmv/\nBDexXsSB1Q9ZiKWTJCDExxnA5KzHkXke5xHrSUeJLZR3zV4YQmQKGQ4SuSxAbBtFiF0fs8z6Oa7p\nnsJbzNorWilVp5TKxN3wRI6SnoDIZf8Z+JVSahy4wG+uCcy3C9VCO099Dvgv00NGACPElijuWaC8\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIURy/f/Gl3uNQqi1pQAAAABJRU5ErkJg\ngg==\n",
"text": [
""
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}